
2023 · 上海

SkyWalking Summit

演讲主题

陆家靖

收钱吧框架工具团队负责人、 SkyWalking PMC Member

“基于SkyWalking Agent的

持续性能剖析与交互式诊断 ”

目录
CONTENTS

. 持续性能剖析

Continuous Profi l ing

02. 交互式诊断

Interactive Diagnosis

01 持续性能剖析

Continuous Profiling

Continuous Profiling的发展史

FIG. GWP published by Google in 2010：low overhead, stable, accurate, scalable

Continuous Profiling的发展史

FIG. Since GWP，many major vendors have joined “Continuous Profiling”：
Pyroscope is an open-source solution，acquired by Grafana Lab on 2023-03-15

Grafana Pyroscope

FIG. Architecture of the Grafana Pyroscope

Java: How to collect? Java Flight
Recorder

FIG. How JFR works in the background: API events and JVM events as
sources. https://www.infoq.com/presentations/monitoring-jdk-jfr

• Capture both JVM and application data
• GC
• Synchronization
• Compiler
• CPU usage
• Exceptions
• I/O

• Sampling-based profiler
• Very low overhead: 2-3%

• Buffers
• Thread Buffer
• Global Buffer
• Repository (Disk chunk)

Java: How to collect? Java Flight
Recorder

FIG. The anatomy of a JFR event and a typical
example

Java: How to collect? Async Profiler

Java: How to analyze? FlameGraph

FIG. A typical flamegraph

https://github.com/brendangregg/FlameGraph

Java: How to analyze? JDK Mission
Control
https://www.azul.com/products/components/azul-mission-control/

Arch Overview

FIG. Overview of the system design

JFR Reader: read events w/ jfr mod

FIG. Read all events and then decode (JDK 8u262+)

JFR Reader: build call stack

FIG. Build the call stack (Tree with treeNode as children)

JFR Reader: build call stack (~80M)

FIG. Memory issue: large heap size while building the call stack
with millions of (allocation) events

~120
million

JFR Reader: build call stack (~80M)

FIG. Memory issue: large heap size while building the call stack
with millions of (allocation) events

JFR Reader: Iterator pattern

FIG. Process RecordEvent one by one

JFR Reader: Iterator pattern

FIG. Memory issue: large heap size while building the call stack
with millions of (allocation) events

background

pea
k

JFR Reader: Slow!

FIG. Performance issue: most time spent on building frame
names

JFR Reader: use raw references

FIG. use references instead of materialized stack trace

JFR Reader: use raw references

FIG. 2,000,000 alloc events share
30,000 stacktraces

JFR Reader: binary search O(logN)?

FIG. Another performance issue: too many binary searches
during insertion even if binary search has O(logN) complexity

JFR Reader: insert first

JFR Reader: aggregate first

JFR Reader: final round

FIG. Final result: use <100M heap, and finish parsing
<1 second

JFR Reader: What about large
JFR file?

FIG. ChunkSize can be controlled by parameter

JFR Reader: What about large
JFR file?

JFR Reader: What about large
JFR file?

One more thing: correlation

02 交互式诊断

Interactive Diag.

How to diag. a CPU spike

How to diag. a CPU spike: Arthas

How to integrate SkyWalking with
Arthas

FIG. 将 Apache SkyWalking 与 Arthas 集成 By 魏翔
https://skywalking.apache.org/zh/2023-09-17-integrating-skywalking-with-arthas/

• For those commands that does not need bytecode
retransform
• thread
• ...

• Bypass Storage: latency sensitive
• ElasticSearch flush interval
• Agents poll commands from OAP: schedued per 20

seconds

How to integrate SkyWalking with
Arthas

Protocol Design: bidi over unary

What about distributed OAP?

What about retransform?
https://github.com/apache/skywalking/blob/master/docs/en/FAQ/Compatible-with-other-javaagent-
bytecode-processing.md#compatibility-with-other-java-agent-bytecode-processes

What about retransform? Changes in 9.0

• For those commands that does need bytecode retransform,
• watch: observe method exec (parameter, result, exception...)
• trace: trace method exec path
• monitor: stat method exec (not real time)

• Main idea
• For TypeDescription: always perfer bytecode from TypePool to reflection API
• For aux. fields/methods: use stable prefix/suffix instead of random ones

Changes in 9.0: perf issue (resolved)

FIG. Using POOL_FIRST TypeDescription strategy in SW Java 9.0 caused almost double application launch time
and larger heap size. Resolved in PR #637.

Q&A 欢迎提问交流

（仅限2位提问）

2023 · SkyWalking Summit

感谢您的观看

